
Vegetables and Pulses Outlook: December 2025

Wilma V. Davis, Catharine Weber, Helen Wakefield, Seth Wechsler, and Steven Zahniser

Record High Yields for Potatoes, Dry Beans, and Processing Tomatoes

In 2025, USDA, National Agricultural Statistics Service (NASS) forecasts record-setting U.S. average yields for potatoes, California processing tomatoes, and dry edible beans (excluding chickpeas). Record-high yields in 2025 partially offset year-over-year declines in planted acreage for all three commodities. The 2025 U.S. average potato yield forecast is 461 hundredweight per acre with year-over-year yield increases in 8 of the 13 NASS-surveyed States. Dry edible bean U.S. average yield is 2,203 pounds per acre, up 6 percent from 2024. Top dry bean-producing States Michigan, North Dakota, and Nebraska are projected to set record State-level yields in 2025. California processing tomato yield forecast (contract only) is 55 tons per acre in 2025—a 10-percent increase from 2024 and 13 percent higher than the previous 5-year average.

Record yield forecasts in 2025 for potatoes, dry beans, and processing tomatoes

Note: California processing tomato yield percentage change for contract yield only.

Source: USDA, Economic Research Service based on data from USDA, National Agricultural Statistics Service, 2025 California Processing Tomato (August 2025), *Crop Production* (November 2025).

In this report:

[Industry Overview](#)

[Fresh Market Vegetables](#)

[Processing Vegetables](#)

[Potatoes](#)

[Mushrooms](#)

[Dry Edible Beans](#)

[Dry Edible Peas and Lentils](#)

[Chickpeas](#)

[Data tables are available in separate Excel file.]

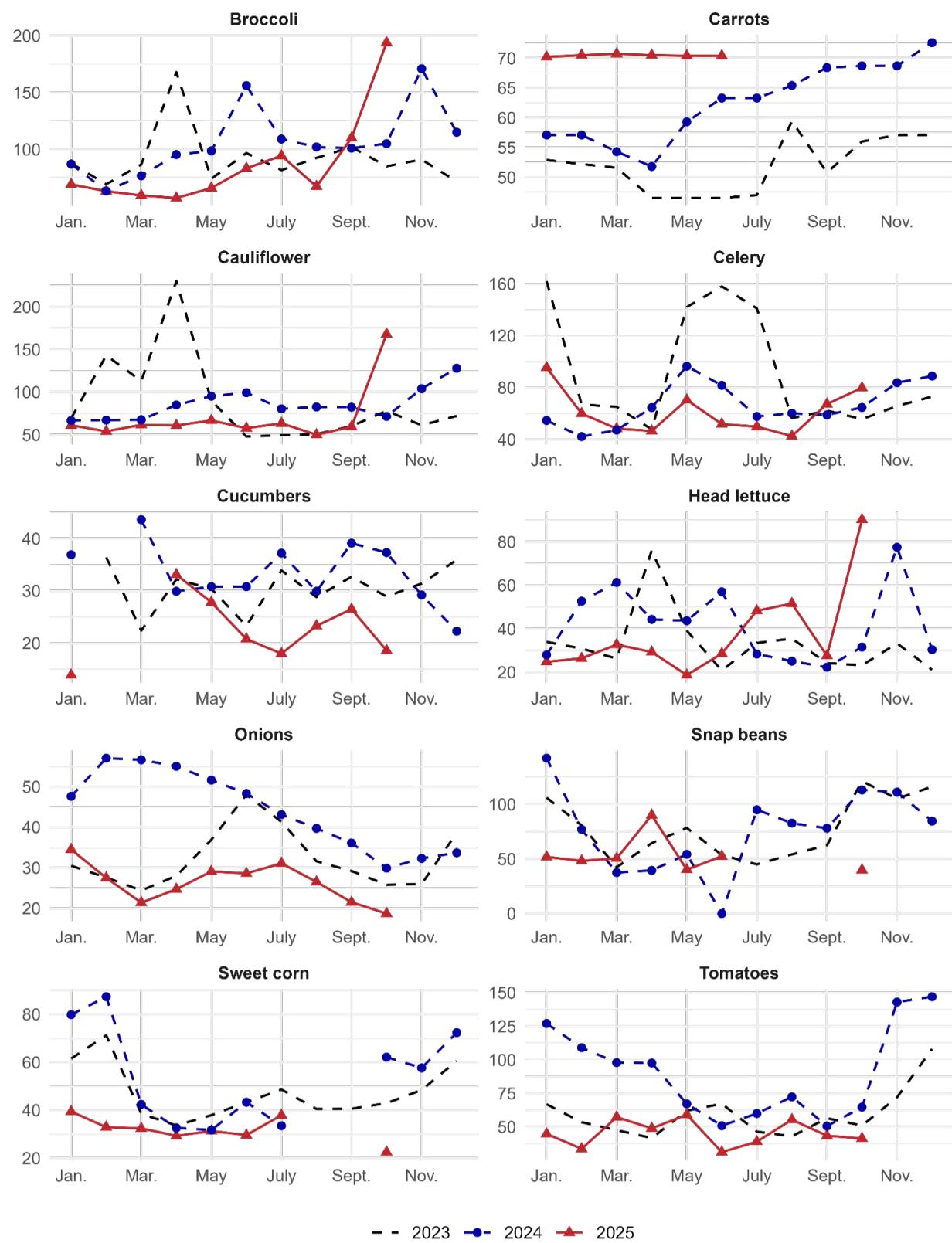
Industry Overview

Weather impacts: Fall 2025 was wet in the west but dry in the southeast. In California, ample rain filled aquifers and reservoirs, helping resolve mild drought conditions in many vegetable producing areas. In the southeastern United States, extreme weather did not damage crops, orchards, or greenhouses. But fewer storms mean less precipitation, and the worst drought conditions since 2011 have developed in parts of Florida, particularly in the north of the State.

Fresh vegetables: In 2025, the fresh market vegetable sector experienced a mixed year, with notable decreases in grower prices for key crops like lettuce, onions, tomatoes, broccoli, cauliflower, and celery because of more favorable growing conditions in comparison to 2024. Although some reported prices increased in October 2025, year-to-date average comparisons through October continued to reflect lower prices than in 2024.

Processing vegetables: Processing tomatoes make up most of the processing vegetables grown in the United States by volume. In 2025, record yields for processing tomatoes in California are expected to largely offset declines in contracted acreage.

Potatoes: The 2025 U.S. potato production forecast is 412.1 million hundredweight (cwt), down 2 percent from last year. The 2025 U.S. average yield forecast is the highest on record (461 cwt per acre) and partially offsets a 3.5-percent decline in harvested acreage. Despite the smaller crop, fresh potato grower prices in the first 2 months of the potato marketing year (September–October) were lower than a year ago.


Mushrooms: In the 2024/25 crop year (July–June), the value of all mushrooms (Agaricus and specialty) was \$1.1 billion, up 1 percent (\$11.3 million) from 2023/24. Total mushroom sales volume rose 2 percent to 669.9 million pounds, reflecting an increase in brown Agaricus and Shiitake mushroom production. Organic mushrooms represented approximately 8 percent of mushroom sales volume. The preliminary 2024/25 per capita availability for all mushroom products (including truffles) is 3.5 pounds per person, a 5-percent increase from 2023/24.

Pulses: Production in 2025 for dry pea, lentil, and chickpea (all classes) is forecasted to increase by 23 percent, 22 percent, and 32 percent respectively, supported by higher yields. In contrast, dry bean production declined 4 percent in 2025 despite record-high yields averaging 2,203 pounds per acre, as acreage reductions outweighed yield gains. Grower prices across pulse crops are trending lower in the 2025/26 marketing year-to-date from the previous year.

Figure 1

Free-on-board (FOB) prices for selected fresh-market vegetables, 2023–25

Cents per pound

Source: USDA, Economic Research Service based on data from USDA, National Agricultural Statistics Service.

Fresh Market Vegetables

Weather's West-East Split: Heavy Rains, Dry Conditions, and Mild Impacts

Fall 2025 weather differed across major vegetable regions but did not materially alter the national market outlook. California received above-average rainfall in September–October with more than 85 percent above the long-term average for that period, which eased drought conditions. Cooler temperatures and improving reservoir levels reduced heat-related production risks compared with 2024. In contrast, the southeastern United States experienced one of its driest fall periods since 2011, with Florida receiving 38 percent less rainfall than normal.

Prices Drop for Key Vegetables in 2025

Generally, prices of major fresh-market vegetables dropped in 2025, based on year-to-date averages through October and compared with the same January–October period in 2024. Prices of many fresh vegetables increased in October 2025, but this did not alter the broader downward trend.

Tomatoes, one of the largest volume crops, continued to face soft market conditions. The average tomato price was 35 cents per pound from January–October 2025, 43 percent below prices during the same period in 2024. Year to date head lettuce prices (from January through October 2025) also trended lower, 4 percent below 2024 prices. Onion prices dropped by 43 percent through October 2025, from 46-cents per pound in January–October 2024 to 26 cents per pound in January–October 2025 (figure 1). Broccoli prices, which averaged about 86 cents per pound from January through October 2025, were 13 percent lower in 2025 than prices during the same period in 2024. Cauliflower prices averaged 70 cents per pound from January through October 2025—lower than prices during those months in 2023 (by 25 percent) and 2024 (by 12 percent). In January 2025, celery prices were relatively high (averaging 96 cents per pound). However, these prices dropped throughout the year, averaging 57 cents per pound from February–October 2025. Carrots were a notable exception this year. Carrot prices averaged 70 cents per pound in early 2025, well above 2024 and 2023 levels (though price data was only available from January to June 2025).

Top Three Fresh-Market Vegetable Crops: Tomatoes, Onions, and Lettuce

The following points provide a broad overview of the market situation for select fresh-market vegetable crops. These summaries analyze USDA, AMS *Market News* shipment volumes (table a3), conventional and organic Free on Board (FOB) shipping-point price data (table a4), and advertised retail price data with a comparison of October–November 2025 to the same months in 2024 (table a5). Additionally, U.S. Department of Commerce, Bureau of the Census import and export data for January through September 2025 are found in table a2.

Tomato shipment patterns in 2025 reflect a seasonal handoff between major producing regions. From January through May 2025, Florida dominated domestic shipments, shipping an average of 91 percent of all U.S. tomato volume. As production shifted west in the summer and fall, California became the leading domestic fresh tomato shipper from June through October 2025, accounting for 54 percent of total tomato volume during those months. In November 2025, tomato movement shifted to Florida with a rising 75-percent share of total tomato domestic volume, while Georgia supplied 18 percent, with California and Tennessee each contributing 3-percent shares.

Tomato shipment volume from January through November 2025 across all tomato varieties (which include vine ripe, mature green, roma/plum, cherry/grape, and unspecified tomato varieties) was 1 percent below a year ago with domestic shipments accounting for 25 percent of domestic and import volume shipments.

Tomato FOB shipping-point prices also reflect softer market conditions domestically. FOB prices for conventional plum/roma type tomatoes in October–November 2025 was 61 cents per pound—down 28 percent from the same period a year ago. Conventional domestic grape tomato FOB prices were down during this period (37 percent year over year) to \$1.04 per pound. **Tomato advertised retail prices** for vine-ripe round tomatoes in October–November 2025 averaged \$1.60 per pound, down about 5 percent from the elevated 2024 price and almost 5 percent above the 2023 price. **Tomato average U.S. consumer prices** for field-grown tomatoes from the Bureau of Labor Statistics (BLS), while seasonally higher in August and September than in July, remained lower than during the same months a year earlier.

Tomato imports in January–September 2025 totaled 3.5 billion pounds, down 0.8 percent from the same period in 2024. On a year-to-date basis, Mexico supplied 88 percent of U.S. fresh tomato imports during January–September 2025, down modestly from roughly 90 percent during 2022–2024, while Canada—the second-largest supplier—accounted for about 11 percent of imports and increased shipments by 15 percent over the same period.

Conventional greenhouse tomato volumes have remained relatively stable in 2025, with volumes nearly unchanged (down 0.2 percent), likely reflecting higher yields compared to conventional field-grown tomatoes and a reliable year-round supply (table a6). In contrast, organic tomato imports (excluding greenhouse) declined 10.8 percent from the previous years, and organic greenhouse imports fell more sharply by 19 percent (table a6). Exports continued their long-term decline, with fresh tomato export volume falling 20 percent from a year ago with 107 million pounds in January–September 2025, extending a trend in place since peaking in 2000 (table a2).

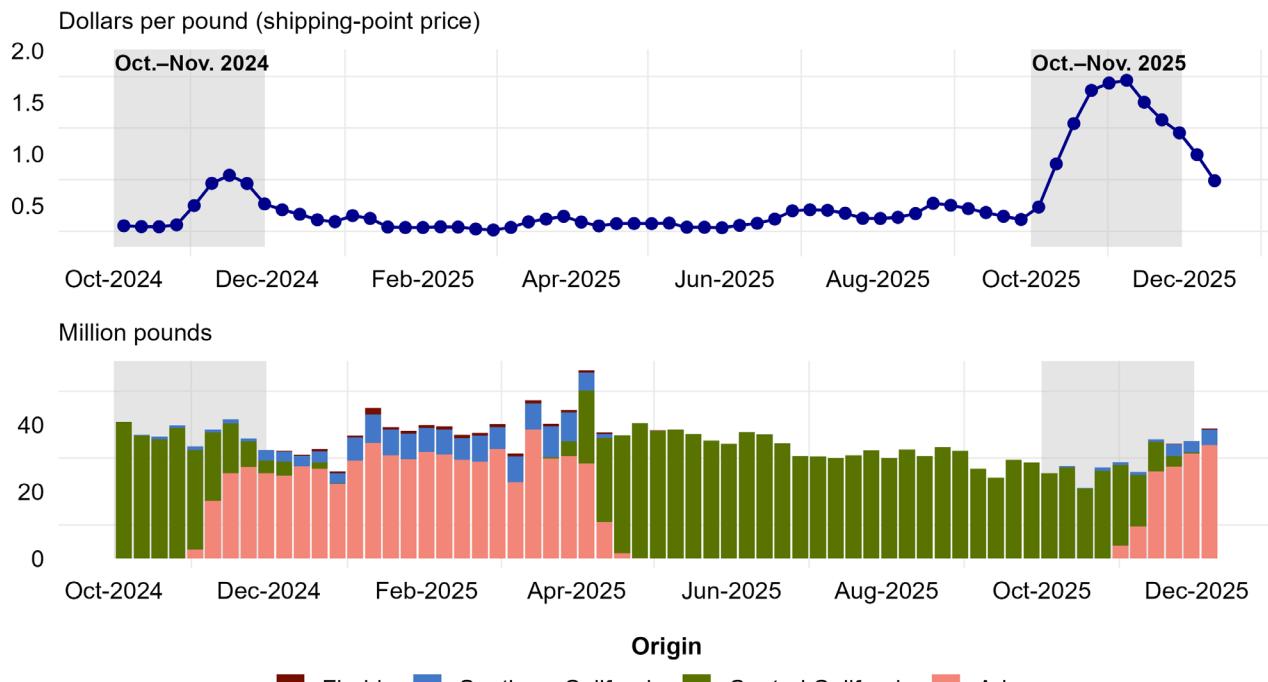
The 2019 Tomato Suspension Agreement took effect on September 19, 2019, replacing the 2013 agreement and establishing reference pricing requirements for U.S. fresh tomato imports from Mexico. Under both the 2013 and 2019 agreements, these imports were subject to reference pricing requirements that were established at or above a set minimum price (a "floor price") in lieu of antidumping duties. The reference prices were structured to account for differences in tomato varietal categories (such as Roma/round), production method (organic versus conventional), and growing environment (greenhouse versus field-grown). However, the 2019 agreement adopted a uniform year-round set of reference prices, while the reference prices in the 2013 agreement also varied by growing season (summer versus winter).

The United States withdrew from the 2019 suspension agreement on July 14, 2025, and the U.S. Department of Commerce resumed the application of antidumping duties on fresh tomato imports from Mexico. Unlike the 2019 suspension agreement, which applied uniform reference prices by tomato varietal categories, production method, and growing environment, the resumed antidumping duty order assigns exporter-specific dumping margins. Most exporters are subject to an estimated rate of 17.09 percent, though according to Federal Register notices and related court decisions, the U.S. Department of Commerce calculated individual weighted-average margins for selected exporters and applied an all-others rate (17.09 percent) to non-examined firms, resulting in higher or lower duties for some exporters.

The duties imposed in July 2025 have not translated into higher domestic prices to date. Domestic FOB shipping-point, retail, and seasonal consumer prices have remained below prior-year levels through November 2025, despite expectations that the duties and concurrent market adjustments would place upward pressure on prices. Fresh tomato import volumes from Mexico have declined modestly since the duties were applied, according to the available U.S. trade data (through September 2025). Tomato imports from Mexico typically increase during the winter months, so additional data will be needed to assess price and trade developments through the winter of 2025–26.

Dry onion domestic shipment volume year-to-date in 2025 (week 1 through week 48) was similar to last year (up less than 0.5 percent). U.S. grown onions are available year-round, with more mild spring/summer fresh market onions available from March to August and more pungent fall/winter storage (“dry bulb”) onions available from August to May. Water content is lower in fall/winter onions, making them more suitable for longer term storage than their spring/summer counterparts.

Washington, California, Oregon, and Idaho are the top four dry onion-producing States, with a combined total of more than 100,000 acres harvested in 2024. Dry onions are harvested in the Pacific Northwest from late July through October and typically ship from August to May, while dry onions from California’s Imperial Valley typically ship from April to June. August–November 2025 shipments (week 31 through week 48) from the Columbia Basin in Washington, which typically accounts for about 32 percent of domestic shipments, were 12 percent lower than the same period in 2024. August–November 2025 combined shipments from Idaho and the Umatilla Basin in Oregon, which together account for almost one-quarter of domestic shipments in recent years, were 6 percent higher than the same period last year. Shipments from California’s Imperial Valley (April–June 2025) were 6 percent lower than in 2024.


Dry onion advertised retail prices for yellow storage onions averaged 91 cents per pound in October–November 2025 based on data from USDA, *AMS Market News*. This is an increase of 6 percent from 85 cents during the same period in 2024.

Trade volumes for onions, shallots, and onion sets decreased year-over-year in the first 9 months of 2025. January–September 2025 import volume for fresh onions, shallots, and onion sets decreased by 5 percent from the same period in 2024. Imports from Mexico, which typically account for about 63 percent of import volume, were down 3 percent year-over-year. Imports from Peru, which typically accounts for about 22 percent of import volume, were up 7 percent year-over-year. January–September 2025 export volume for fresh onions, shallots, and onion sets decreased by 15 percent from the same period a year earlier. Most fresh onion exports are destined for either Canada (63 percent) or Mexico (28 percent). Exports to Canada were down 7 percent year-over-year, while exports to Mexico fell 55 percent.

Domestic lettuce-growing regions seasonally transition between top-producing Central California in the summer and fall and the irrigated desert valleys in Arizona and Southern California during the winter and spring months. Rain during October and early November 2025 in Central California lowered lettuce yields and contributed to disease pressure. Wetter growing conditions at the end of Central California’s lettuce season resulted in an uneven regional

transition to the desert Southwest. During October–November 2025, USDA, AMS domestic shipment volumes for Romaine and iceberg lettuce were 22 and 26 percent lower, respectively, than a year ago (figure 2). Reduced domestic lettuce volumes put upward pressure on weekly shipping-point prices, which peaked for Romaine lettuce during the first week of November. Average weekly lettuce prices began to recover by mid-November as shipment volumes from Arizona increased.

Figure 2
Romaine lettuce, domestic weekly shipment volumes and price

Note: Price represents average weekly domestic shipping-point prices for conventional Romaine lettuce. Domestic origin shipment volumes include both conventional and organic and all cuts (Romaine hearts and unspecified).

Source: USDA, Economic Research Service based on data from USDA, Agricultural Marketing Service, *Market News* shipping-point prices and movement data.

Romaine lettuce advertised retail prices averaged \$2.03 per head in October–November 2025 (up 26 percent) from 2024 and 21 percent higher the same period in 2023. Iceberg retail prices averaged \$1.81 per head, up 5 percent from a year ago and up 26 percent from 2023.

Lettuce imports (all types) from January–September 2025 were down 14 percent by volume and 25 percent by value from a year ago. Year-to-date fresh lettuce imports totaled 458 million pounds, the smallest volume for that period since 2018. Mexico accounted for 86 percent of fresh lettuce import volume, followed by Canada (14 percent). Exports of all lettuce types fell 11 percent by volume and 17 percent by value. Lettuce export volume totaled 498 million pounds with the majority going to top destination Canada (375 million pounds).

Processing Vegetables

Many U.S. producers grow vegetables intended for processing. These vegetables tend to have thick skins, uniform shapes, and other properties that make harvesting and processing easier. In 2024, U.S. vegetables grown for the processing market totaled 30.8 billion pounds on a farm weight basis.¹ Tomatoes make up the majority of domestic processing vegetable production by volume, accounting for 22.2 billion pounds, or just over 70 percent. Sweet corn is the second-largest vegetable grown for the processing market at 3.7 billion pounds (or about 12 percent).

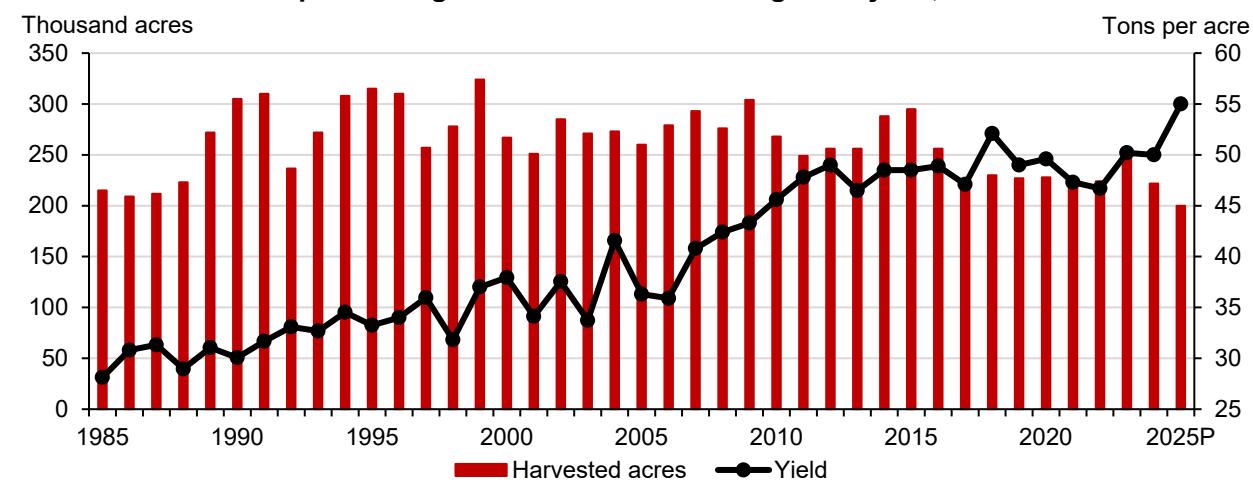
Processing Tomatoes: Record High Yields Offset Lower Acreage in 2025

Domestic processing tomato production is concentrated in California, where the warm climate supports growth and reduces freeze risk. Processing tomato harvest in California typically spans from July through October, and almost all of California's processing tomato crop is produced under contract between growers and processing firms.

The most recent release of the USDA, NASS *2025 California Processing Tomato Report* (August 2025) indicates that contracted processing tomato production in California is expected to be 11.0 million tons in 2025, a decrease of 1 percent from last year's contracted production but 7 percent above the May 2025 estimate of 10.3 million tons this season. Record-high yields are expected to largely offset a decline in contracted acreage.

USDA, NASS processing tomato yield forecast (contract only) is 55 tons per acre in 2025—an increase of 5 tons per acre from 2024 and surpassing the previous record of 52.1 tons per acre set in 2018 (figure 3). In 2025, mild spring temperatures and adequate water availability led to favorable planting conditions for California processing tomato growers. Summer temperatures were cooler than normal and well below the extreme heat experienced in California in 2024, helping to boost yields to record highs.

Contracted harvested acreage for California processing tomatoes is projected at 200,000 acres in 2025, a decrease of 10 percent year over year and the lowest on record since 1985.

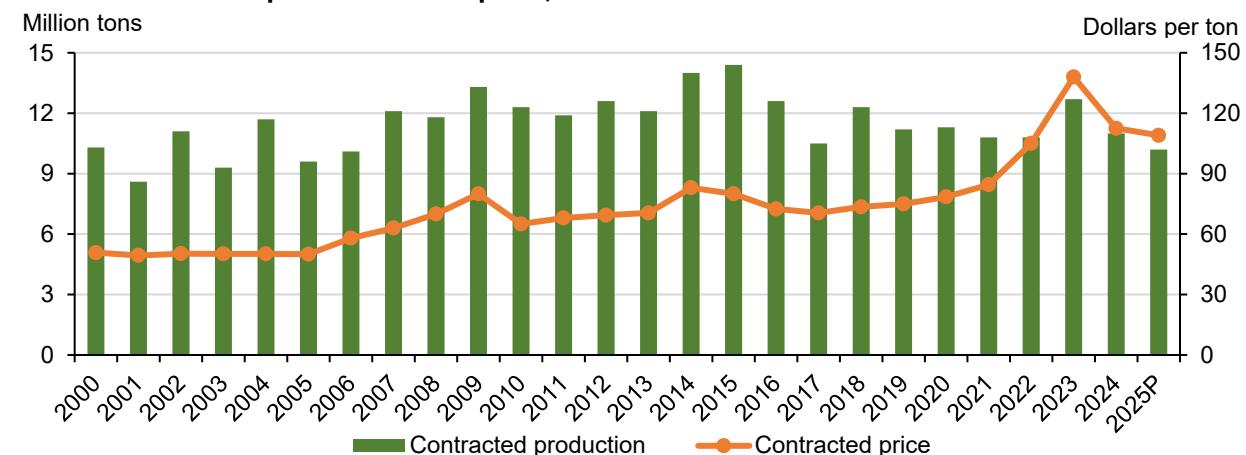

Contracted tomato acreage increased in the late 1980s and 1990s, peaking at 324,000 acres in 1999 (figure 3). Acreage has decreased since the turn of the century and has remained below 300,000 acres since 2010. This decline has been mostly offset by higher yields, with average yields increasing from 30.1 tons per acre in the mid-1980s (1985–87) to 49 tons per acre in recent years (2022–2024).

¹ Processing vegetable production totals exclude potatoes, sweet potatoes, and mushrooms based on data published in the USDA, ERS *Vegetables and Pulses Yearbook* (August 2025).

Figure 3

California contracted processing tomato harvested acreage and yield, 1985 to 2025P

P = preliminary.


Source: USDA, Economic Research Service based on data from USDA, National Agricultural Statistics Service, *California Processing Tomato Report* (various issues).

2025 domestic shipments: The August 2025 USDA, NASS processing tomato report noted that some acreage may go unharvested if canneries decide not to process excess tonnage. Final estimates from the Processing Tomato Advisory Board (PTAB) through November 1, 2025, indicate 11.6 million tons of processing tomatoes from California were delivered this season. Major producing counties in California, each with more than 1 million tons of processing tomato shipments this season, include Fresno, Merced, and Kings counties in the San Joaquin Valley and Yolo County in the Sacramento Valley.

Of the 11.6 million tons delivered in 2025, 601,000 tons were organically grown, representing about 5 percent of California processing tomato shipments. About 60 percent of organic tomato volume originated in Fresno and Kings counties. Organic shipments were much higher than in 2024, increasing 57 percent year-over-year, but about 5 percent below the previous 3-year average of 635,000 tons (2021–23).

Contracted prices: According to the California Tomato Growers Association, the 2025 base price (price at the first delivery point, excluding premiums) was \$109 per ton, down from \$112.50 per ton the previous season (figure 4). This price agreement was reached with all 8 processors. An organic price agreement of \$137 per ton was reached with 5 of the major processors. This price is down from \$145 per ton in 2024 and the lowest since 2021. Contracted prices for both conventional and organic processing tomatoes reached record highs in 2023, with conventional contracts at \$138 per ton and organic contracts at \$190 per ton that season.

Figure 4
Contracted tomato production and price, 2000 to 2025P

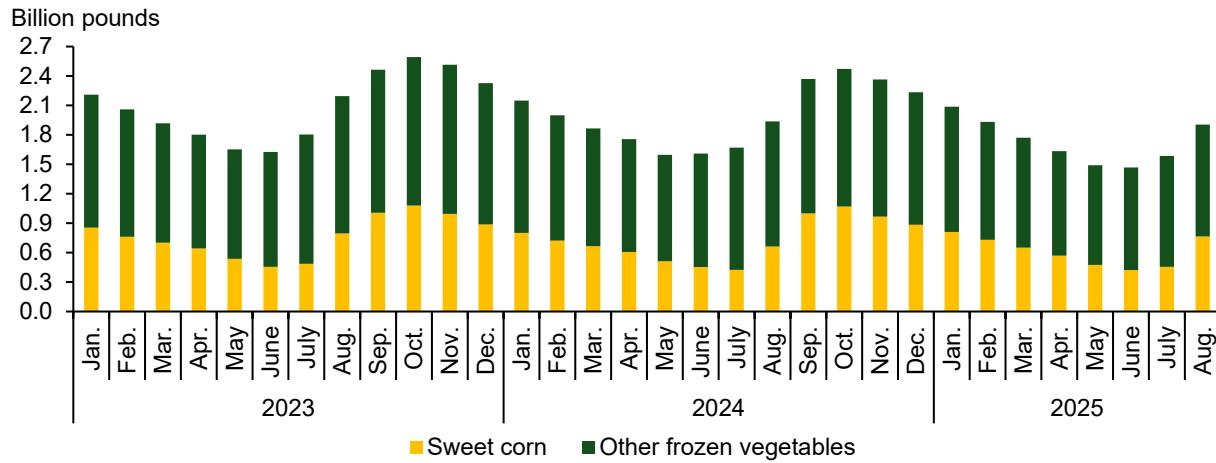
P = preliminary data for contracted production.

Note: Contracted price is the first delivery point price.

Source: USDA, Economic Research Service based on data from USDA, National Agricultural Statistics Service and California Tomato Growers Association.

Tomato paste stocks: The California League of Food Processors (CLFP) estimates U.S. processed tomato pack and inventory on a June 1–May 31 pack year. Most inventory is held in tomato paste. CLFP estimates bulk tomato paste stocks, including inventory held for remanufacture, were 4.72 million tons (on a raw product “paid-for tons” equivalent basis) as of June 1, 2025, an increase of 12 percent from the previous year. CLFP estimates bulk tomato paste-for-sale inventory was 3.51 million tons (on a raw product “paid-for tons” equivalent basis) as of June 1, 2025, an increase of 15 percent from the previous year.

Global production: According to the World Processing Tomato Council (WPTC), the preliminary estimate for 2025 global production of tomatoes used to make processed products is expected to be 40.3 million metric tons, a decline of 12 percent from 45.8 million metric tons in 2024. California is expected to be the world’s largest producer in 2025 and account for just over one-quarter of the world’s production.


China and Italy are major global producers of processing tomatoes. Italy is expected to produce 5.8 million metric tons in 2025 according to WPTC, an increase over the previous season with higher yields and good quality this season. China is expected to produce 4.9 million metric tons in 2025, a significant decrease from last year’s record-high production of over 10 million metric tons, which made China the top global producer of processing tomatoes in 2024.

Frozen Vegetable Stocks

Through the end of August 2025, frozen vegetable stocks (excluding potatoes) in cold storage warehouses were down 2 percent from August 2024 but rose 20 percent month-over-month

from the end of July 2025. Frozen vegetable cold storage holdings shift seasonally and are lowest in summer (end of June or end of July) and peak at the end of October (figure 5). Sweet corn makes up a large share of frozen vegetables held in cold storage. Cold storage holdings of sweet corn typically average a low of around 450 million pounds during the summer (end of June or end of July) and a high of over 1 billion pounds by the end of October.

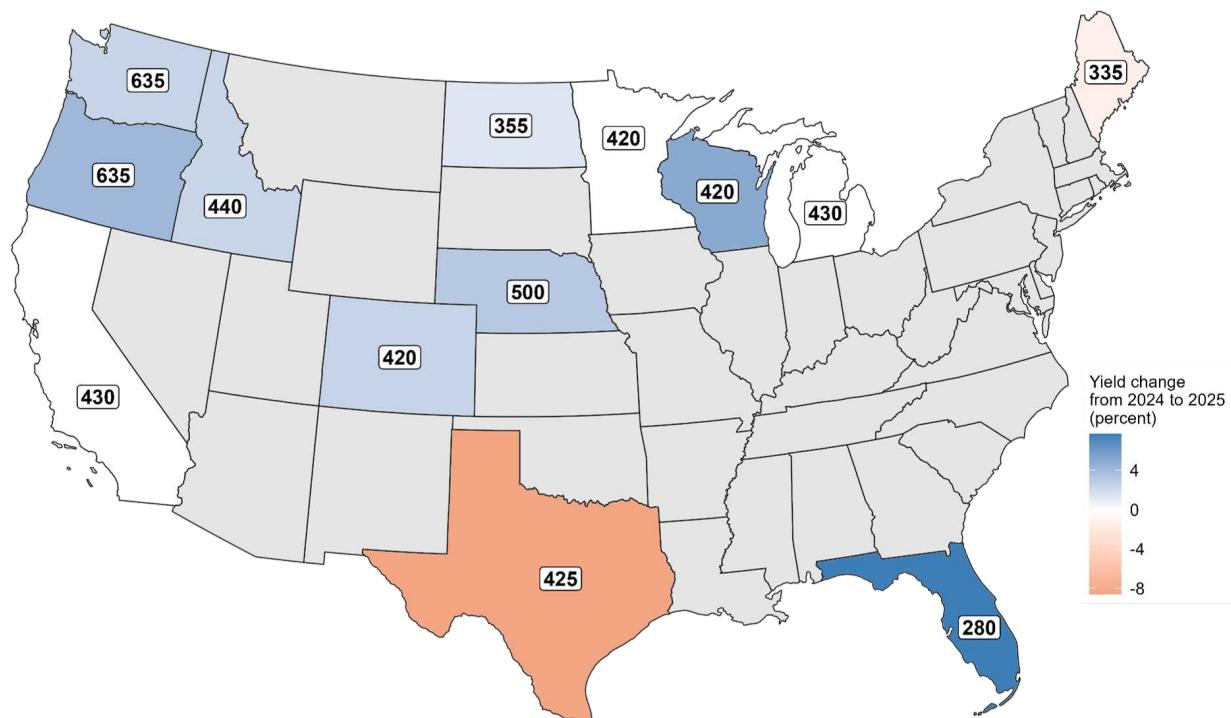
Figure 5
Frozen vegetables in cold storage, January 2023 to August 2025

Note: Cold storage holdings as of the end of the month shown. Excludes potato products. Sweet corn includes both cut sweet corn and on the cob.

Source: USDA, Economic Research Service based on data from USDA, National Agricultural Statistics Service, *Cold Storage*.

Processed Vegetable Import Value Up, Export Value Down

Imports: During the first 9 months of 2025 (January–September), the value of U.S. processed vegetable imports (including potatoes) increased 0.4 percent from the same period a year earlier. The import value of frozen and dried and dehydrated vegetables declined, while the import value of prepared or preserved vegetables and vegetable juices increased (table b7). Frozen vegetable imports, which account for just over half of imported processed vegetable value on average (2022–2024), decreased 2.2 percent during this period, largely because of changes in frozen french fry imports (volume down 6 percent, value down 11 percent), which make up a large share of frozen vegetable imports.


Exports: During the first 9 months of 2025 (January–September), the value of U.S. processed vegetable exports decreased 8 percent from the same period a year earlier. All market segments of processed vegetables (frozen, prepared/preserved, dried and dehydrated, and juice) decreased in value year-over-year. Frozen vegetable exports, which account for almost half of exported processed vegetable value on average (2022–2024), decreased 5 percent during this period. Top frozen vegetable exports, such as frozen french fries, sweet corn, and green peas, declined year-over-year during the January–September period (table b8).

Potatoes

Record Yield in 2025; Acreage and Production Down

USDA's November *Crop Production* reported that 2025 U.S. potato production is 412.1 million hundredweight (cwt), down 2 percent from last year. While this year's forecast production would be the second smallest in the last decade, it is still larger than the 2022 crop, which was adversely affected by a cool wet spring that delayed planting and lowered yields in key growing regions. The 2025 U.S. average yield forecast is the highest on record (461 cwt per acre) and partially offsets a 3.5-percent decline in harvested acreage. Potato yields rose year over year in 8 of the 13 NASS-surveyed States² (figure 6). State-level yields ranged from 280 cwt per acre (Florida) to 635 cwt per acre (Washington and Oregon). Oregon, North Dakota, and Nebraska recorded historically high yields in 2025, while the 2025 yield in Colorado (420 cwt per acre) tied the State's 2020 record high. The only two States with year-over-year yield declines were Maine and Texas.

Figure 6
U.S. potato yield forecast by State in hundredweight per acre, 2025

Note: Annual survey data for potatoes was not published for Alaska or Hawaii; therefore, the States are not shown on the map.
Source: USDA, Economic Research Service using data from USDA, National Agricultural Statistics Service, *Crop Production* (November 2025).

² Top 13 potato producing States include California, Colorado, Florida, Idaho, Maine, Michigan, Minnesota, Nebraska, North Dakota, Oregon, Texas, Washington, and Wisconsin.

State-level production: In 2025, Idaho is expected to produce 34 percent of the domestic crop, followed by Washington at 21 percent. Wisconsin is expected to surpass Oregon to rank third in 2025. Only four States are forecast to have year-over-year increases in production (Wisconsin, Colorado, Idaho, and Florida) in 2025. Both Wisconsin and Colorado increased planted acres and yield from last year, while gains in Idaho and Florida are driven by increases in yield. Potato production is forecast lower in Maine and neighboring provinces in eastern Canada (Prince Edward Island and New Brunswick, according to Statistics Canada), with drought conditions lowering average yields this season.

Grower prices: Following consecutive price increases in MY 2021/22 (September–August) and 2022/23, the U.S. season average potato price fell 5 percent season over season in 2023/24 and 2024/25. The 2024/25 U.S. season average potato price was \$11.70 per cwt, reflecting a double-digit percentage decline in the average fresh price from 2023/24 (down 12 percent), and a 37 percent decline relative to 2022/23. Processing potato prices in 2024/25 were \$11.00 per cwt, a 2-percent decline from the average processing price in 2023/24, but a 9 percent increase compared to 2022/23. About two-thirds of potato sales are for processing use. While the fresh potato price is sensitive to changes in production, the processing potato price tends to be less volatile because of grower-processor contracts signed ahead of spring planting. Industry reports indicate that a reduction in contracted acreage from potato processors also coincided with a year-over-year reduction in processing contract prices in MY 2025/26.

Since the start of MY 2023/24, monthly NASS fresh potato grower prices have remained below \$13 per cwt for 26 consecutive months (September 2023–October 2025), well below the monthly price range during 2022/23 (\$18.50–\$25.90 per cwt). The monthly grower fresh potato prices in the first 2 months of MY 2025/26 followed last season's pattern with month-over-month declines in September and October. Average monthly fresh potato grower prices in early MY 2025/26 were lower than the same time last year. Based on shipping-point prices reported by USDA, AMS, average monthly open-market fresh potato prices are expected to be below \$11 per cwt in November and December 2025. Ample supplies of Russet potatoes from Idaho are expected to continue to put downward pressure on fresh potato grower prices and average fresh potato retail prices into the new year.

During the first 3 months of the 2025/26 marketing year, domestic table stock potato shipment volume (September–November 2025) was less than 1 percent lower compared with the same time last year. Russet potatoes, the most common type of potato grown in the United States, accounted for 82 percent of table stock shipment volume. A steady supply of Russets and an increase in yellow type shipments (up 7 percent) offset lower volumes of round red (down 15

percent) and all other varieties (down 36 percent). While round red shipments rose year over year from Idaho during this period, it was offset by declines in round red shipments from North Dakota and Minnesota. Weekly chipping potato shipment volumes during the same 3-month period lagged 12 percent behind last year and 21 percent behind 2023.

Potato Exports and Imports in MY 2024/25: Frozen french fries rank No. 1 in U.S. potato imports and exports in terms of value and volume (table c9). The 2024/25 marketing year became the sixth season in a row the United States was a net frozen french fry importer by volume and the fourth season in a row by value. U.S. frozen french fry export volume in 2024/25 was 1.7 billion pounds, down 2 percent from 2023/24 and the lowest volume since 2010/11. A year-over-year increase in exports to top destinations Japan (up 5 percent), Canada (up 16 percent), and Taiwan (up 9 percent) did not offset double-digit declines to Mexico and the Philippines. U.S. frozen french fry import volume fell 3 percent in 2024/25 from the record-high 2.7 billion pounds set in 2023/24. The marketing year decline ended 5 consecutive seasons of increased french fry import volume. Canada accounted for 85 percent of french fry volume followed by the European Union at 12 percent. More than 90 percent of frozen french fry imports from the European Union came from Belgium (67 percent) and the Netherlands (24 percent).

U.S. fresh potato export volume (excluding seed) in 2024/25 reached a record high 1.22 billion pounds, up 1 percent from 2023/24. For the second season in a row, Mexico was the top destination for U.S. fresh potato exports, accounting for more than 500 million pounds in MY 2023/24 and 2024/25. This increase followed regulatory changes USDA announced in mid-2022 that expanded market access for U.S. fresh potato exports to Mexico. While 2024/25 exports to Mexico fell 8 percent compared to last season, the decline was offset to offshore trading partners Japan (up 70 percent) and Taiwan (up 41 percent). In 2024/25, fresh potato exports to Japan (all of which are fresh chipping stock potatoes) reached a record-high 127 million pounds, accounting for 10 percent of U.S. fresh potato export volume.

U.S. export volume and value for dried and dehydrated potatoes (excluding starch) and potato chips in MY 2024/25 declined from the previous year. U.S. dried and dehydrated potatoes (mostly flakes) dropped 20 percent by volume, driven by decreased potato flake exports to all four top markets (Japan, Mexico, Canada, and the United Kingdom). U.S. potato chip export volume fell 10 percent from 109 million pounds (product-weight) in 2023/24 to 99 million pounds in 2024/25 on reduced volume to Mexico. During the same period, potato chip imports totaled 126 million pounds, a 17-percent increase from last year. Potato chip imports from Canada have increased in recent years, but domestic potato chip production continues to represent more than 90 percent of annual potato chip domestic availability (fresh-weight basis).

Mushrooms

Production Volume Increased in 2024/25

USDA, NASS reports mushroom production in two broad categories: Agaricus mushrooms and specialty mushrooms. Agaricus mushrooms include white button mushrooms and brown button mushrooms like Portabello and Crimini. Specialty mushrooms include mushrooms outside the *Agaricus* genus, including popular cultivated varieties like Shiitake and Oyster. During the 2024/25 crop year (July–June), the value of all mushrooms (Agaricus and specialty) was \$1.1 billion, up 1 percent (\$11.3 million) from 2023/24 (table 1). Total mushroom sales volume rose 2 percent to 669.9 million pounds, reflecting an increase in brown Agaricus and Shiitake mushroom production that offset declines in white Agaricus and other specialty mushrooms compared with the previous marketing year. The average grower price was similar to last season, with a small decline in Agaricus prices offset by a 10-percent increase in average specialty mushroom prices.

Table 1. Mushroom sales volume, price, and sales value

Item	---- Volume of sales ----		----- Price -----		----- Value of sales -----	
	2023/24	2024/25	2023/24	2024/25	2023/24	2024/25
	---- 1,000 pounds ----		---- Dollars per pound ----		---- 1,000 dollars ----	
Agaricus	642,831	653,624	1.56	1.53	1,001,250	1,000,619
White ¹	461,713	457,220	1.43	1.41	660,076	644,007
Brown ²	181,118	196,404	1.88	1.82	341,175	356,612
All Specialty	15,773	16,305	5.46	5.83	86,197	95,015
Shiitake	3,832	5,341	4.92	6.23	18,864	33,286
Oyster	3,717	3,437	4.80	5.18	17,840	17,795
Other	8,224	7,527	6.02	5.84	49,494	43,934
Total	658,604	669,930	1.65	1.64	1,087,448	1,095,633

Note: The marketing year for mushrooms begins in July and ends in June of the following year.

1/ USDA, Economic Research Service derives white mushroom statistics using the total Agaricus and Brown statistics.

2/ Includes Portabello and Crimini.

Source: USDA, Economic Research Service using data from USDA, National Agricultural Statistics Service, *Mushrooms*.

Agaricus (button mushrooms): By market segment, sales of fresh Agaricus mushrooms accounted for 91 percent of total volume in 2024/25. Fresh Agaricus mushroom sales volume rose by 6 percent, from 564 million pounds in 2023/24 to 595.6 million pounds in 2024/25. Processed Agaricus mushrooms volume fell 26 percent year over year (down 20.6 million pounds), with top-producing State Pennsylvania producing 94 percent of U.S. volume.

In 2024/25, **Pennsylvania** accounted for 54 percent of U.S. Agaricus production value (\$536 million) and 69 percent of volume (452 million pounds). Growing area used for Agaricus production in the State increased for the third season in a row, while yields in 2024/25 remained the same as last season. Since mushrooms are harvested throughout the year, yield is calculated by dividing total fillings (i.e., the number of square feet filled) by growing area (i.e., the number of square feet in production) during a marketing year. Approximately 88 percent of Pennsylvania's 452-million-pound Agaricus mushroom crop went to the fresh market, with the remainder processed (e.g., canned, frozen, dehydrated). Fresh Agaricus mushroom sales volume in Pennsylvania in 2024/25 was the largest in 4 seasons and accounted for two-thirds of U.S. sales volume. While Pennsylvania's 2024/25 fresh Agaricus mushroom sales volume (398 million pounds) was 25 percent below the record high set in 2014/15 (529 million pounds), volume has exceeded 300 million pounds each season since 1999/2000 (figure 7). Pennsylvania's Agaricus mushroom processing sales volume in 2024/25 was 54.4 million pounds, down 28 percent from 2023/24. The 2024/25 season marked the second-smallest sales volume of Agaricus mushrooms for processing in the State (behind 2019/20) since records began in the mid-1960s.

Figure 7

Pennsylvania Agaricus mushroom sales volume by use, 1966/67–2024/25

Note: Mushroom marketing year is July through June. Agaricus mushrooms include White Button and Brown mushrooms like Crimini and Portabello.

Source: USDA, Economic Research Service using data from USDA, National Agricultural Statistics Service, *Mushrooms* (various issues).

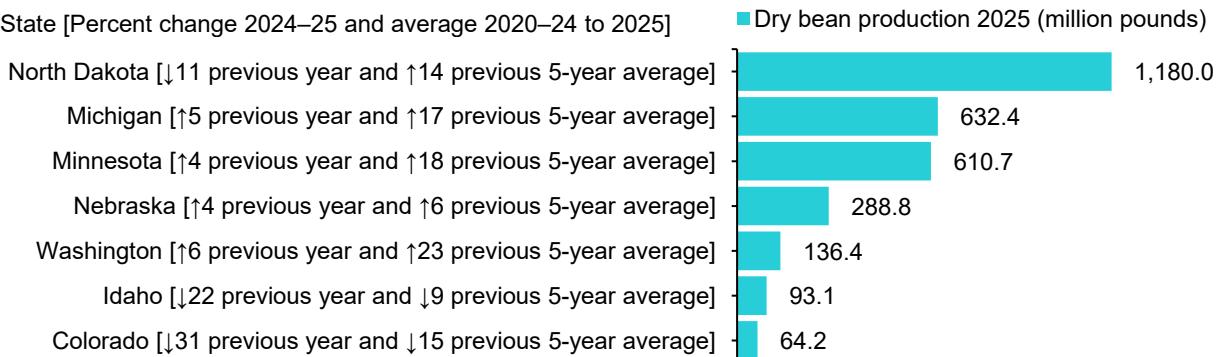
Specialty mushrooms: In 2024/25, specialty mushrooms (conventional and organic) represented 9 percent of U.S. mushroom production value and 2 percent of sales volume. Growers reported 2024/25 specialty mushroom sales valued \$95 million, a 10-percent increase from 2023/24. In terms of volume, grower sales rose for Shiitake (up 39 percent) but fell for Oyster (down 8 percent) and other specialty mushroom varieties (down 8 percent).

Organic mushrooms: Growers sold 54.1 million pounds of certified organic mushrooms (Agaricus and specialty) in 2024/25—the lowest volume since 2014/15. Organic mushrooms represented approximately 8 percent of total mushroom grower sales volume, which is lower than the 9–10 percent share during the previous 7 marketing years. Agaricus sales continued to account for the largest share of certified organic mushroom sales by volume (80 percent). Organic Agaricus sales volume fell from 52 million pounds in 2023/24 to 43 million pounds in 2024/25. Specialty mushroom sales volume rose year-over-year for organic Shiitake (up 23 percent) but fell for organic Oyster (down 8 percent) and other organic specialty varieties (down 9 percent).

Mushroom per capita availability: The preliminary 2024/25 per capita availability for all mushroom products (including truffles) is 3.5 pounds per person, a 5-percent increase from 2023/24 (3.3 pounds per person). An increase in domestic fresh mushroom production and net imports (fresh-weight basis) halted the previous 8 consecutive year-over-year declines in per capita mushroom consumption. After peaking in 2015/16 at 3 pounds, fresh mushroom per capita availability in 2024/25 is 2.4 pounds per person, representing 68 percent of all mushroom per capita availability. Processed mushroom per capita availability (fresh-weight equivalent) has continued to remain approximately 1 pound per person since 2013/14, with imports partially offsetting a gradual decline in domestic processed production.

Outlook for the 2025/26 mushroom season: According to the USDA, NASS *Mushrooms* report (August 2025), growers intend to decrease Agaricus bed and tray production area (total fillings) by 12 percent, from 126.8 million square feet in 2024/25 to 111.1 million square feet in 2025/26. In 2025/26, mushroom growers expect to decrease Agaricus total fillings by 16 percent in Pennsylvania and 1 percent in other surveyed States. Domestic monthly shipments in the first 3 months of 2025/26 (July–September 2025) was 6 percent behind the same period last year with lower volumes from both Pennsylvania and California, the National Mushroom Council reported. Trade data from the U.S. Department of Commerce, Bureau of the Census during the first 3 months of 2025/26 (July–September 2025) indicated fresh Agaricus mushroom import volume totaled 42 million pounds, up 2 percent from last season, with higher volumes from top supplier Canada more than offsetting a decline from Mexico (down 38 percent).

Dry Edible Beans

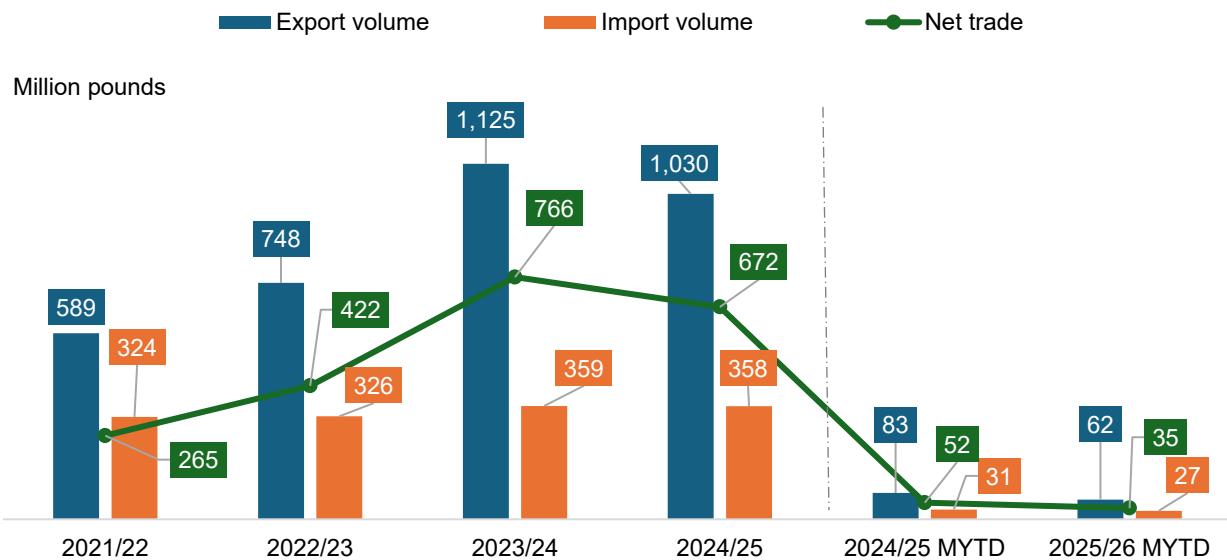

Dry Bean Acreage Declines While Yield Increases

The latest dry bean planted area and production estimates were released in the November 2025 issue of the USDA, NASS *Crop Production*. Planted area for dry edible beans (excluding chickpeas) decreased 9 percent from 2024 to 1.39 million acres in 2025. Despite a record-breaking yield of 2,203 pounds per acre—a 6-percent increase driven by record-breaking yields in Michigan (up 5 percent, reaching 2,550 pounds per acre), North Dakota (up 9 percent, reaching 2,000 pounds per acre), and Nebraska (up 22 percent, reaching 2,750 pounds per acre)—lower dry bean planted acreage led to a 4 percent decline in production from 2024 to 2025. Higher yields in key dry bean-producing States were not enough to outweigh the 9 percent acreage reduction in 2025 and contributed to lower national dry bean production.

North Dakota, Michigan, and Minnesota together accounted for 81 percent of total domestic production, which reached 2,423 million pounds in 2025—down 4 percent from 2024. To provide a broader perspective, production changes are compared both to last year and the previous 5-year average (2020–24) to capture longer term trends beyond year-to-year variability (figure 8). Most States' percentage change production trends in 2025 are consistent in direction from the previous year and to the previous 5-year average except for North Dakota. North Dakota's 11-percent decline from the previous year contrasts with the 14-percent increase from the previous 5-year average. Overall, four of the seven dry bean-producing States showed increasing production from 4 percent in Minnesota and Nebraska, 5 percent in Michigan, and 6 percent in Washington. Idaho and Colorado declined by 22 and 31 percent respectively but are not predominant dry bean-producing States (figure 8).

Figure 8

Dry bean production in 2025 and State-level changes from recent averages


Source: USDA, Economic Research Service, using data from USDA, National Agricultural Statistics Service, *QuickStats*.

Dry bean acreage estimates for 2025 by class from USDA, NASS are expected to be released in early 2026. In 2024, the three major dry bean classes by planted acreage, excluding “other class”, were pinto, black, and navy beans. Pinto beans led with 696.6 thousand acres, accounting for 45 percent of total acreage and increasing 40 percent from the previous year. Black bean acreage reached 429.1 thousand acres, representing 28 percent of acreage and rising 47 percent year over year. Navy beans totaled 125.3 thousand acres, or 8 percent of total bean acreage, down 8 percent from the previous year.

Dry Bean Imports and Exports Decline with Net Trade Narrowing

The 2024/25 U.S. dry bean marketing year spans September 2024 through August 2025, with the United States retaining its position as a net exporter of dry beans. The trade balance reflects strong export volumes relative to imports over the past 4 full marketing years, though the 2024/25 net trade gap has modestly narrowed from 2023/24 marketing year because of decreasing exports (figure 9).

Figure 9
U.S. dry bean marketing year trade volume through September 2025

MYTD = marketing year to date; September only shown. Full marketing years (September–August) are shown for the indicated years, with a vertical line separating full marketing years from MYTD series.

Source: USDA, Economic Research Service using data from the U.S. Department of Commerce, Bureau of the Census.

Dry bean imports for the full 2024/25 marketing year decreased marginally by a quarter of 1 percent compared to 2023/24, reaching 358 million pounds (figure 9). Key suppliers for the 2024/25 marketing year include Canada, the largest import source with 105.8 million pounds, down 6 percent from the previous year; India, whose imports increased by 24 percent to 54 million pounds; and Nicaragua, whose imports declined by 18 percent to 49.9 million pounds. The increase in imports in the 2024/25 marketing year from the previous year are mostly miscellaneous beans (various generic types up 4 percent representing 23 percent of the total),

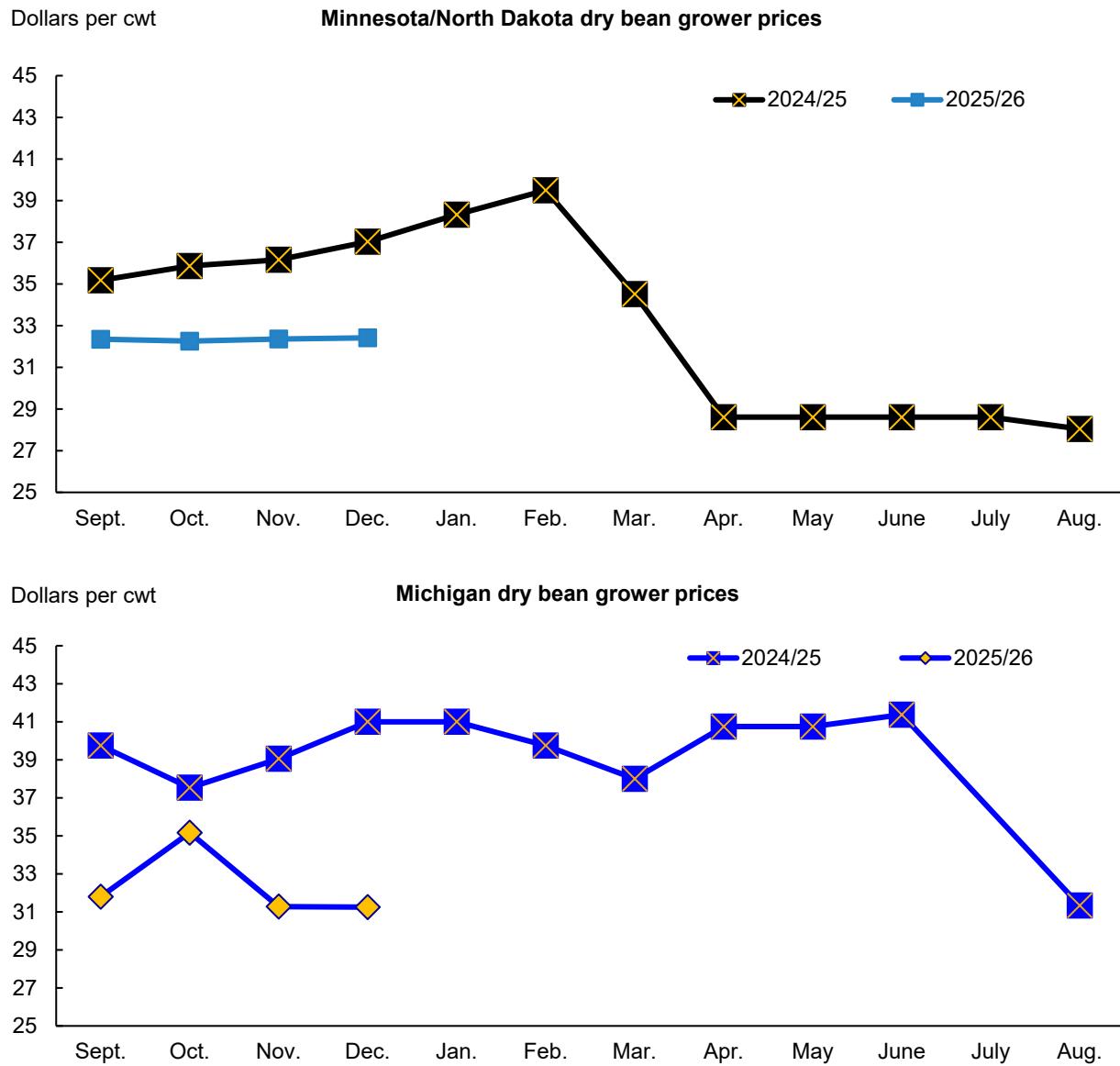
and mung beans (up 24 percent accounting for 19 percent of the total). This largely offset significant declines in kidney beans (all types down 13 percent accounting for 20 percent of the total), black beans (down 20 percent, representing 12 percent of the total), and pinto beans (down 2 percent, accounting for 12 percent of the total) (table d10).

The current MY to date for 2025/26 (September 2025 only) dry bean imports totaled 6.5 million pounds, compared with 5.6 million pounds in 2024/25 (table d13). September's 10-year average share of MY import volume is about 7.8 percent, reflecting its modest role. A notable exception was the 34-percent September spike in the 1998/99 MY.

Dry bean exports for the full 2024/25 marketing year declined by 8 percent compared to 2023/24, reaching 1.03 billion pounds (table d11). Key destination countries for the 2024/25 marketing year include Mexico, Dominican Republic, and Canada. Mexico is the largest export destination with 360.5 million pounds, a decrease of 30 percent from the previous marketing year. Shipments to the Dominican Republic increased by 20 percent to 120.5 million pounds. Exports to Canada decreased by 20 percent to 84.6 million pounds.

The overall decrease in exports in the 2024/25 marketing year was primarily influenced by changes in kidney beans (all types down 29 percent, accounting for 29 percent of the total), pinto beans (down 29 percent, representing 16 percent of the total), and navy beans (down 0.3 percent, accounting for 16 percent of the total) from the previous year (table d11).

The current MY to date for 2025/26 (September 2025 only) dry bean exports totaled 62.4 million pounds, compared with 83.3 million pounds in 2024 (table d11). September's 10-year average share is 8.3 percent of MY export volume, a modest marker, with the 1998/99 MY standing out for its 17.9 percent September spike.


Dry Bean Prices Continue to Decline Going Forward

Production, yield, and world demand influence markets for each dry bean class and characterize the dry bean price outlook. The all-dry bean price, excluding chickpeas, reported by USDA, NASS in the December *Agricultural Prices* report for the 2025/26 marketing year to date, (September–October) averaged \$28.60 per cwt—23 percent below the 2024/25 marketing year (table d12). Dry bean prices reported by USDA, AMS, for the 2025/26 marketing year through December 2025 averaged 10–17 percent below the previous crop year (figure 10).

USDA, AMS reported declines in average weekly grower prices from September 2025 through December 8, 2025, for all dry bean types in the Minnesota/North Dakota region at \$32.42 per cwt—down 10 percent from the previous year for the same months. Dry bean grower prices in

the Michigan region declined by 18 percent from the previous year, averaging \$31.25 per cwt for the same months. Despite record-breaking yields in several key States, national dry bean production is projected to decline in 2025, driven largely by an 11-percent reduction in North Dakota. With lower production and early trade information limited because of government shutdown-related delays, dry bean prices are still expected to soften relative to 2024/25.

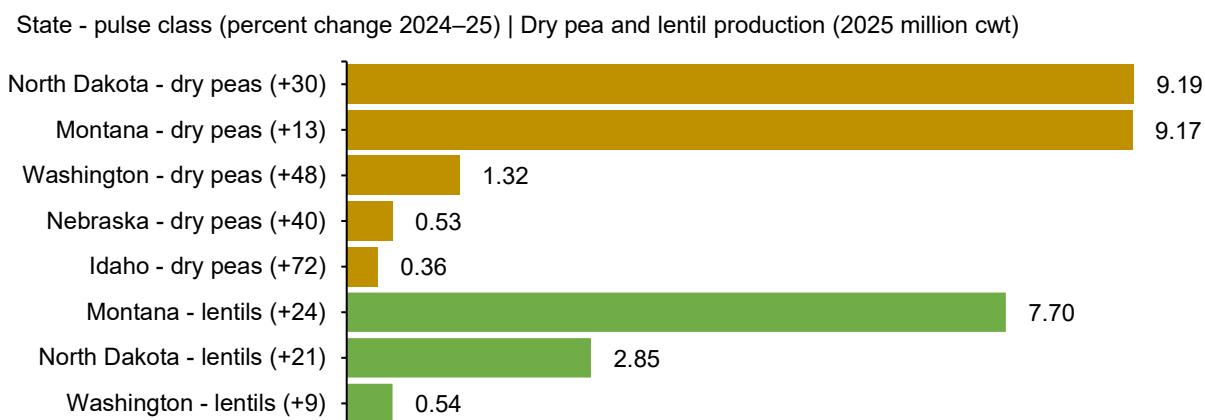
Figure 10
U.S. dry edible bean average weekly grower prices in 2025/26: flat but lower year over year in Minnesota/North Dakota, trending down in Michigan

Note: Michigan dry bean grower prices were not reported in July 2025.

Cwt = hundredweight, a unit of measure equal to 100 pounds.

Source: USDA, Economic Research Service calculations using USDA, Agricultural Marketing Service, *Pulse Data Report 2014* through December 8, 2025.

Dry Edible Peas and Lentils


Dry Pea and Lentil Production Gains Across All States in 2025

Dry pea production increased across all reported States in 2025. The USDA, NASS *Crop Production* report released in November 2025 estimates dry peas and lentils for the 2025 marketing year (July 2025–June 2026). Dry pea planted area rose 21 percent to 1.18 million acres, and production grew by 23 percent to 20.6 million cwt, supported by a 2-percent yield increase to 1,814 pounds per acre—a gain of 39 pounds per acre from a year earlier. Production growth was led by North Dakota (up 30 percent, reaching 9.19 million cwt) and Montana (up 13 percent to 9.17 million cwt) (figure 11).

Overall, the 2025 dry pea expansion reflects earlier planting and strong emergence in some northern States, with acreage growth in multiple key producing regions. In North Dakota, dry pea planting advanced from 31 to 84 percent planted by mid-May 2025, 10–15 percent ahead of the 5-year average, supporting the 30-percent production gain. While Montana's near-average planting pace and 13-percent increase suggest a more limited weather effect and more modest gains in yield and acreage. However, Idaho (a smaller dry pea-producing State) posted a large production percentage increase (72 percent) but this shift contributes modestly to the overall U.S. dry pea output. Dry pea yield in Idaho declined by 11 percent from last year indicating the increase in Idaho's dry pea production is primarily acreage-driven rather than weather or yield-driven as Idaho doubled planted acreage to 22,000 acres year over year.

Figure 11

Dry pea and lentil production in 2025, showing State-level growth from 2024

Cwt = hundredweight, a unit of measure equal to 100 pounds.

Source: USDA, Economic Research Service, using data from USDA, National Agricultural Statistics Service, *QuickStats*.

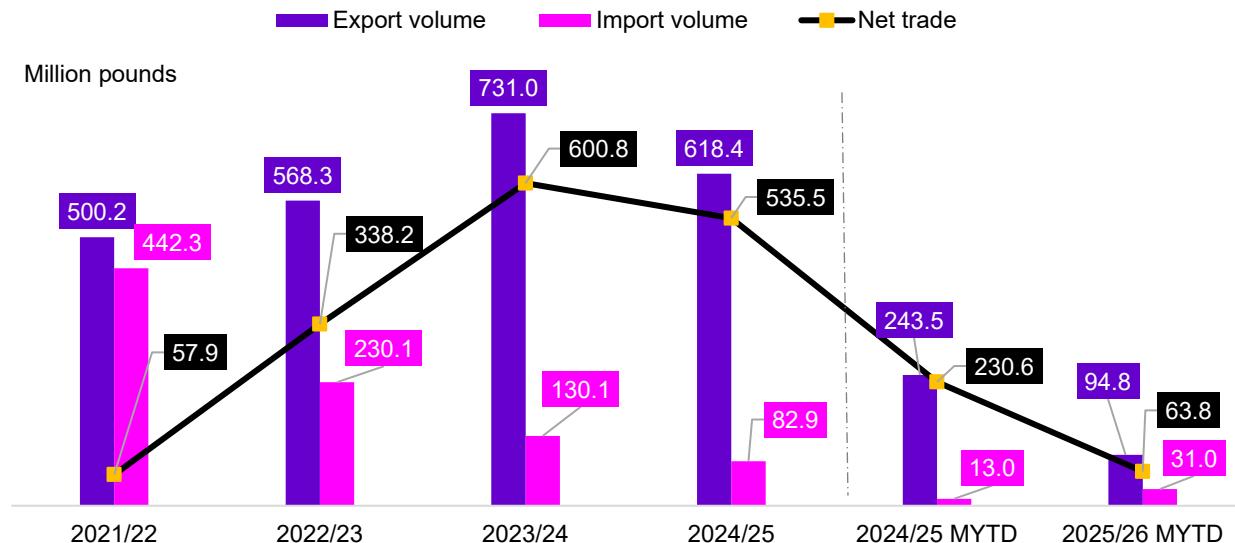
Planted lentil acreage is forecast to increase by 15 percent with 1.07 million acres, with harvested acreage expected to rise by 16 percent to 1.05 million acres. Lentil production is

expected to grow by 22 percent, reaching 11.1 million cwt across three reported States (Montana, North Dakota, and Washington) (figure 11). Average yield is projected to increase by 53 pounds per acre year over year, driven largely by a 7- and 6-percent yield increase in North Dakota and Montana respectively, which together account for 95 percent of total surveyed lentil production. National estimates from 2021–25 for acreage, production, crop value, yield, and season average price for dry peas and lentils are available in tables d13 and d14.

Dry Pea Net Trade Declining While Lentil Net Trade Expands in 2024/25

The United States is a net exporter of dry peas and lentils. In 2024/25, net trade for lentils expanded 44 percent to 572.9 million pounds in 2024/25 from the previous marketing year and has been rising since 2022/23. However, dry pea net trade in 2024/25 declined by 11 percent to 535.5 million pounds driven by exports to China and Canada falling by 71 and 86 percent, respectively, from the previous marketing year.

The top three dry pea export destinations accounted for 51 percent of volume in the 2024/25 marketing year; China (19 percent of total exports with 115.3 million pounds) was the top destination, followed by Bangladesh (17 percent with 108.0 million pounds) and Canada (15 percent with 92.8 million pounds) (figure 12). Bangladesh's emergence as a top dry pea destination in 2024/25 marks a notable shift in trade patterns as its share of total U.S. dry pea exports rose well above its long-run average of 1 percent annually since the 1988/89 marketing year and its previous peak of 2.1 percent in 2007/08. The shift in 2024/25 coincided with elevated food-inflation pressures in Bangladesh—food inflation reached 14.1 percent in July 2024, according to the Bangladesh Bureau of Statistics (FAS, Grain and Feed Update, August 2024)—and a structural reliance on imported pulses. Bangladesh's annual pulse demand is estimated at roughly 2.5 million tons, compared with domestic production of about 0.9 million tons, leaving a substantial share met through imports (Global Feed & Milling Magazine, June 2025).


Marketing year trade volume by class and country from 2022/23–2025/26 through September 2025 are provided in table d15 for exports and table d16 for imports. The following points describe trends in dry pea and lentil trade for the first 3 months of the current (2025/26) marketing year (July–September) using the most recent data reported by the U.S. Department of Commerce, Bureau of the Census:

- Dry pea export volume declined 62.1 percent, reaching 166 million pounds year over year. This decline was largely driven by exports to Canada (down 85 percent) and China (up 76 percent). The shift in 2025/26 coincides with marginal increase in Canadian dry pea supply

and forecasted increased carry-out stocks that signal increased regional supply and downward price pressure, which may influence Canadian buyers to rely more on Canadian-origin dry peas and less on U.S. dry peas (Agriculture and Agri-Food Canada, 2025, various outlook issues).

- Dry peas exported to all countries in July–September 2025 were predominantly green peas (69 percent of total exports with 65 million pounds) and split peas (21 percent of the total with 20 million pounds), followed by yellow peas with 7 percent of the total (table d15).
- Dry pea import volume during the July–September period of the 2025/26 marketing year increased 139 percent, reaching 31 million pounds compared with the previous marketing year, driven by increases in split, yellow, and green pea types with split peas (up 69 percent reaching 12 million pounds), yellow peas (up 542 percent), peas, other (down 1 percent), and green peas (up 83 percent) (table d16).

Figure 12
U.S. dry edible pea net trade has trended down since 2023/24

MYTD = marketing year to date; July–September values shown. Full marketing years (July–June) are shown for the indicated years, with a vertical line separating full marketing years from MYTD series.

Source: USDA, Economic Research Service calculations using data from USDA, National Agricultural Statistics Service.

- Lentil export volume decreased 63 percent from the previous marketing year with 71 million pounds during the July–September period of the 2025/26 marketing year. This decrease in lentil export volume is driven by a 74-percent decrease to Canada (27 million pounds total) and another significant decrease to India (down 97 percent to 1.5 million pounds). These decreases more than offset increases in volume to Spain (up 76 percent to 11 million pounds) in the 2024/2025 marketing year (table d15).
- Lentil import volume in July–September 2025/26 decreased 8 percent from the previous marketing year (same time period) with all lentil types; red lentils down 30 percent, green


lentils up 22 percent, and other lentils down 13 percent. Much of the lentil import decline stems from reductions in imports from Canada (down 13 percent to 11 million pounds), which offset increases in lentil import volume from India (table d16).

Dry Edible Pea and Lentil Prices Continue Downward Trend

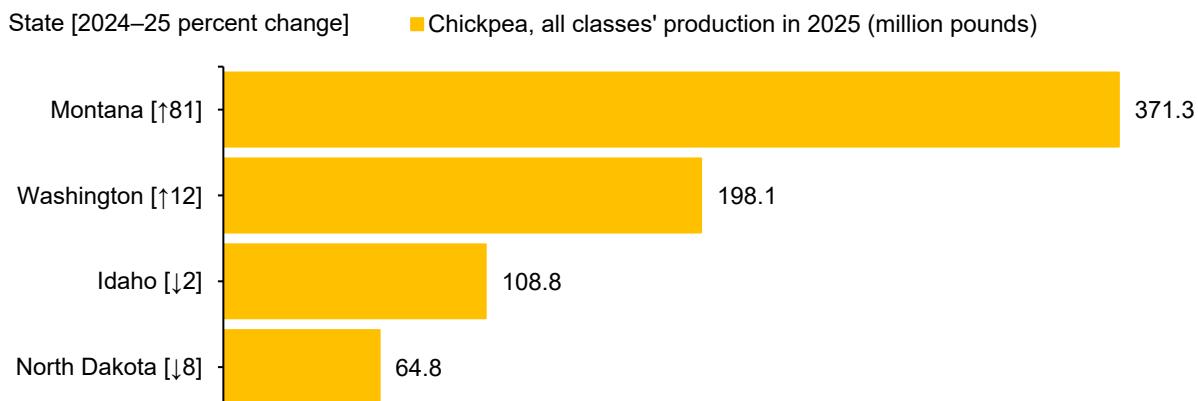
Production, yield, and world demand influence markets for dry peas and lentils and characterize the price outlook. The dry pea price reported by USDA, NASS for the 2024/25 marketing year reached \$13.60 per cwt—11 percent below the previous marketing year (table d13). The lentil price for the 2024/25 marketing year reached \$35.90 per cwt—11 percent below the previous marketing year (table d14). Average dry pea weekly prices reported by USDA, AMS in 2025/26 (July–December) are 4 percent below the previous crop year, averaging \$13.79 per cwt in the Pacific Northwest while the Minnesota/North Dakota dry peas average \$11.88 (down 17 percent) in that same period. Lentil prices during the same period in the Pacific Northwest are down 30 percent from a year earlier, averaging \$25.07 per cwt while lentils in the Minnesota/North Dakota region are down by 45 percent averaging \$18.84 per cwt (figure 13).

Figure 13

Average grower prices: Pacific Northwest dry peas and lentils in 2025/26 have premium over Minnesota/North Dakota, and 2025/26 prices in both regions are declining from previous year

Cwt = hundredweight, a unit of measure equal to 100 pounds. Prices are in dollars per cwt.

Source: USDA, Economic Research Service calculations using USDA, Agricultural Marketing Service Pulse Data Report 2914.


Chickpeas

Prospective Chickpea Area and Production Rises in 2025

The USDA, NASS November *Crop Production* indicates that 541,000 acres of chickpeas (all classes) were planted in 2025, an 8-percent increase over the previous year. A 12-percent increase of large chickpea plantings offset the 4-percent decline in small chickpea plantings in 2025. Chickpea (all classes) harvest, production, and yield are expected to increase by 6, 32, and 24 percent respectively (table d17). In 2025, NASS reported national chickpea production (all classes) at 743 million pounds. Because of disclosure concerns, class-level (small vs. large) statistics were suppressed in key States, so the focus is on all chickpeas (figure 14). Chickpea production gains in Montana of 81 percent to 371 million pounds and Washington's rise of 12 percent to 198 million pounds from the previous year offset production declines in Idaho and North Dakota of 2 and 8 percent from the previous year respectively. The spike in Montana chickpea production in 2025 reflects a combination of sharply higher planted area (up 18 percent) and improved yields (up 58 percent), coinciding with chickpea prices that, while lower in absolute terms than a year earlier, remain competitive relative to alternative crops and fit well within wheat-based rotations.

Figure 14

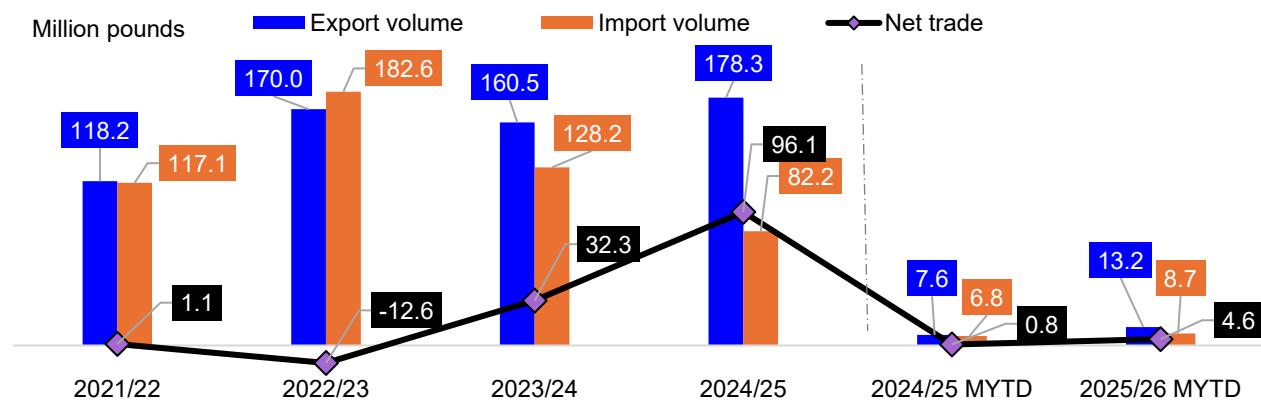
U.S. chickpea production in 2025 with State-level changes from 2024

Source: USDA, Economic Research Service calculations using data from USDA, National Agricultural Statistics Service.

The following points describe trends in chickpea supply, price, crop value, and trade:

- Estimates of chickpea inventories for June 1 and December 1 are reported by USDA, NASS. The June 2025 chickpea all-class stock level, which reflects inventories at the end of the July 2024–June 2025 chickpea marketing year, was 191.3 million pounds—36 percent above the previous year. Stock levels are stabilizing after a steady downturn following the sharp spike (341 percent) from 88 million pounds in June 2018 to 388.5 million pounds in June 2019. June 2025 marks the first increase in June stocks after four

straight years of consecutive declining chickpea stocks since peaking in 2020 with 388.9 million pounds.


- A comprehensive listing of USDA, NASS reported estimates of area, yield, production, price, and crop value for 2021–25 for chickpea-all classes, large, and small chickpeas is in the Excel appendix tables d17–19.

Chickpea Imports and Exports in 2024/25

Since 2000, the United States has predominantly been a net chickpea exporter. In 2022/23, import volume exceeded exports by 13 million pounds, briefly shifting the United States to a net importer position. In 2024/25, the United States reverted to being a net exporter, exporting a total of 178.3 million pounds, 96 million pounds more than it imported (figure 15). The top three destination countries for chickpea exports in 2024/25, which comprised 70 percent of the total chickpea export market share, were Canada (30 percent, reaching 53.3 million pounds), Spain (25 percent, reaching 45 million pounds), and Pakistan (15 percent, with 27 million pounds).

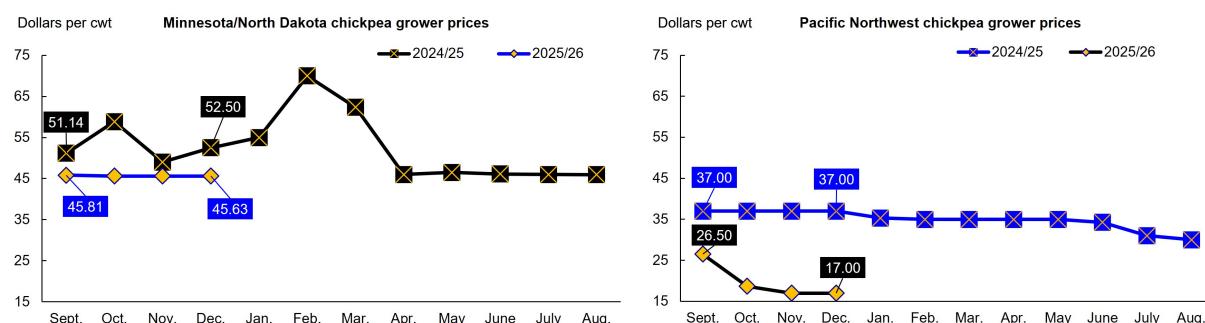
Figure 15

U.S. chickpea export volume by marketing year through September 2025

MYTD = marketing year to date; September only shown. Full marketing years (September–August) are shown for the indicated years, with a vertical line separating full marketing years from MYTD series.

Source: USDA, Economic Research Service using data from U.S. Department of Commerce, Bureau of the Census.

- From September 2024 to August 2025, domestic producers exported 178.3 million pounds of chickpeas. This is an 11-percent increase from the 2023/24 marketing year (table d20).
- Chickpea exports increased by 75 percent in September 2025 compared with the same period last year, totaling 13 million pounds (table d20).
- From September 2024 through August 2025, the United States imported 82.2 million pounds of chickpeas, a 36-percent decline from the 2023/24 marketing year total of 128.2 million pounds. This drop was driven by a 37.8-percent decrease in garbanzo chickpea imports, which fell to 72.6 million pounds and a 15.8-percent decline in Kabuli chickpeas. Chickpea imports from Canada declined by 60.1 percent to 16.1 million pounds along with a 42.8-


percent decline in Mexico to 22.1 million pounds which overshadowed the 8.8-percent increase in imports from India (table d21) in 2024/25 from the previous marketing year. U.S. chickpea import declines from Canada and Mexico between September 2024 and August 2025 coincided with stronger U.S. domestic chickpea supplies and softer import demand, along with relatively higher prices and tighter exportable chickpea supplies from Mexico. Despite ample Canadian availability, weaker U.S. demand and competitive domestic and alternative-origin chickpea supplies likely encouraged U.S. buyers to rely more on domestic chickpeas and less on Canadian and Mexican chickpeas during this period (USDA, Foreign Agricultural Service, various reports; Agriculture and Agri-Food Canada, 2025, various outlook issues).

- Chickpea imports increased by 27 percent in September 2025 compared with the same period last year totaling 9 million pounds (table d21).

Large Chickpea Prices Down from Last Year

The latest reported USDA, NASS national large chickpea MYA price was \$34.30 per cwt for 2024/25—7 percent below the previous marketing year (table d18). USDA, AMS weekly large chickpea prices³ show a similar declining trend in 2024/25, down 12 percent year over year. Regional USDA, AMS large chickpea weekly prices from September–December 2025 were also lower: down 14 percent in the Minnesota/North Dakota region and 47 percent below in the Pacific Northwest (figure 16). Increased domestic supply—larger planted and harvested area and improved yields compared to a year earlier, along with rising global chickpea supply—is expected to keep downward pressure on conventional chickpea prices in 2025/26.

Figure 16
Average weekly grower prices in 2025/26: Chickpeas down 14 percent from last marketing year to date in Minnesota/North Dakota and 47 percent down in Pacific Northwest

Cwt = hundredweight, a unit of measure equal to 100 pounds.

Source: USDA, Economic Research Service calculations using USDA, Agricultural Marketing Service Pulse Data Report 2914 through December 8, 2025.

³ USDA, AMS regional prices refer to U.S. No. 1 garbanzo beans (large chickpeas); USDA, NASS season average prices are separately estimated using survey data for large, small, and all-class chickpea prices.

Suggested Citation

Davis, W. V., Weber, C., Wakefield, H., Wechsler, S., & Zahniser, S. (2025). *Vegetables and pulses outlook: December 2025* (Report No. VGS-377). U.S. Department of Agriculture, Economic Research Service.

Use of commercial and trade names does not imply approval or constitute endorsement by USDA.

In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the State or local Agency that administers the program or contact USDA through the Telecommunications Relay Service at 711 (voice and TTY). Additionally, program information may be made available in languages other than English.

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at How to File a Program Discrimination Complaint: <https://www.usda.gov/oasr/how-to-file-a-program-discrimination-complaint> and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Mail Stop 9410, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email: <mailto:program.intake@usda.gov>.

USDA is an equal opportunity provider, employer, and lender.